A level maths pure

    Cards (55)

    • Sin2x = 2sinxcosx
    • Cos2x = cos^2 x - sin^2 x
    • Cos2x = 1 - 2sin^2x
    • Cos2x = 2cos^2x - 1
    • Tan2x = 2tanx / 1 -tan^2x
    • Discriminant = b^2 + 4ac
    • If the discriminant is positive, there are two real roots.
    • If the discriminant is negative, there are no real roots.
    • If the discriminant is zero, there is one repeated root (a double root).
    • Ln 1/x = -lnx
    • a^2 = b^2 + c^2 - 2bc(cosA)
    • Arc length = r0
    • Sector area = 0.5 x r^2x0
    • Segment area = 0.5 x r^2 x (0-sin0)
    • F(x) + a = y coordinate + a
    • Af(x) = y coordinate x a
    • -f(x) = flip and reflect In x axis
    • |f(x)| = below the x axis flips up
    • F(x + a) = x coordinate - a
    • F(ax) = x coordinate x 1/a
    • F(-x) = flip reflection in y axis
    • F(|x|) = right of the y axis reflects in left side
    • Small angle approx = sin0 and tan0 are 0
    • Small angle approx = cos0 becomes 1 - 0^2/2
    • Co functions: sin0/cos0 = cos/sin (90-0)
    • Sin^2 + cos^2 = 1
    • 1 + tan^20 = sec^20
    • 1 + cot^20 = cosec^20
    • Rearranged DAF sin^20 = 1/2 - 1/2cos20
    • Rearranged DAF cos^20 = 1/2 + 1/2cos20
    • If Rcosc : a and Rsinc : b = R : root of a^2 + b^2 and tanc : b/a
    • Second derirative > 0 = convex/min
    • Second derirative < 0 = concave/max
    • Second derirative : 0 = point of inflection
    • First derirative < 0 = decreasing
    • First derivative > 0 = increasing
    • dx e^x = e^x
    • dx lnx = 1/x
    • Dx sinx = cosx
    • Dx cosx = -sinx
    See similar decks