A level maths pure

Cards (55)

  • Sin2x = 2sinxcosx
  • Cos2x = cos^2 x - sin^2 x
  • Cos2x = 1 - 2sin^2x
  • Cos2x = 2cos^2x - 1
  • Tan2x = 2tanx / 1 -tan^2x
  • Discriminant = b^2 + 4ac
  • If the discriminant is positive, there are two real roots.
  • If the discriminant is negative, there are no real roots.
  • If the discriminant is zero, there is one repeated root (a double root).
  • Ln 1/x = -lnx
  • a^2 = b^2 + c^2 - 2bc(cosA)
  • Arc length = r0
  • Sector area = 0.5 x r^2x0
  • Segment area = 0.5 x r^2 x (0-sin0)
  • F(x) + a = y coordinate + a
  • Af(x) = y coordinate x a
  • -f(x) = flip and reflect In x axis
  • |f(x)| = below the x axis flips up
  • F(x + a) = x coordinate - a
  • F(ax) = x coordinate x 1/a
  • F(-x) = flip reflection in y axis
  • F(|x|) = right of the y axis reflects in left side
  • Small angle approx = sin0 and tan0 are 0
  • Small angle approx = cos0 becomes 1 - 0^2/2
  • Co functions: sin0/cos0 = cos/sin (90-0)
  • Sin^2 + cos^2 = 1
  • 1 + tan^20 = sec^20
  • 1 + cot^20 = cosec^20
  • Rearranged DAF sin^20 = 1/2 - 1/2cos20
  • Rearranged DAF cos^20 = 1/2 + 1/2cos20
  • If Rcosc : a and Rsinc : b = R : root of a^2 + b^2 and tanc : b/a
  • Second derirative > 0 = convex/min
  • Second derirative < 0 = concave/max
  • Second derirative : 0 = point of inflection
  • First derirative < 0 = decreasing
  • First derivative > 0 = increasing
  • dx e^x = e^x
  • dx lnx = 1/x
  • Dx sinx = cosx
  • Dx cosx = -sinx