MODULE 9

Cards (44)

  • General form of quadratic function
    ๐‘“(๐‘ฅ) = ๏ฟฝ๏ฟฝ๐‘ฅ2 + ๏ฟฝ๏ฟฝ๐‘ฅ + ๐‘, where a, b, and c are real numbers, ๐‘Ž โ‰  0
  • Standard form (Vertex form) of quadratic function
    ๐‘“(๐‘ฅ) = ๐‘Ž(๐‘ฅ โˆ’ โ„Ž)2 + ๐‘˜, where ๐‘Ž โ‰  0, and the point (โ„Ž, ๐‘˜) is called the vertex
  • Transforming quadratic function from general form to standard form
    1. Factor ๐‘Ž in ๐‘Ž๐‘ฅ2 + ๐‘๐‘ฅ
    2. Complete the square
    3. Simplify
  • To find the vertex of f(x) = -2x^2 - x + 1โ€จ
    1. Identify the values of a, b and c
    2. Substitute the values of a, b and c into the formulas h = -b/2a and k = (4ac - b^2)/4a
    3. Simplify
  • The vertex of f(x) = -2x^2 - x + 1 is (-1/4, 9/8)
  • Change the following quadratic functions to standard form
    Write the letter in the corresponding numbered spaces below to reveal the hidden word
  • Quadratic functions to change to standard form
    • f(x) = x^2 - 2x + 5
    • f(x) = 2x^2 + 4x
    • f(x) = x^2 + 4x
    • f(x) = x^2 - 2x + 15
    • f(x) = x^2 - 6x + 5
    • f(x) = x^2 + 2x - 4
    • f(x) = -x^2 - 4x + 5
    • f(x) = -x^2 - 2x + 4
  • Find the vertex of the following quadratic functions
    Choose the answer from the vertices at the table below and write the letter on the spaces provided before each number
  • Quadratic functions to find the vertex
    • f(x) = x^2 - 2x + 5
    • f(x) = x^2 - 6x + 5
    • f(x) = -x^2 + 2x + 4
    • f(x) = 2x^2 + 4x
    • f(x) = x^2 + 2x - 4
  • Verticesโ€จ
    • (-1, -5)
    • (1, -5)
    • (-1, 4)
    • (3, -4)
    • (-1, -2)
    • (-3, 4)
    • (1, 4)
    • (1,5)
    • (1,2)
    • (1, -2)
  • Two forms of quadratic functions
    General form<|>Standard/vertex form
  • General form of quadratic function
    f(x) = ax^2 + bx + c
  • Standard form of quadratic function
    f(x) = a(x - h)^2 + k
  • Vertex of f(x) = -x^2 + 2โ€จ
    (0, 2)
  • Standard/vertex form of f(x) = x^2 - 6x + 8โ€จ
    f(x) = (x - 3)^2 - 1
  • Fill in the blanks for f(x) = x^2 + 10x + 15
    1. 10
    2. 25
    3. 10
  • Fill in the blanks for f(x) = x^2 + 6x + 1
    1. 1
    2. 6
    3. 1
    4. -3
    5. -3
  • The standard form of the quadratic function f(x) = a(x - h)^2 + k if a = 2, h = -2 and k = -2 is f(x) = 2(x + 2)^2 - 2
  • The vertex form of f(x) = x^2 - 8x - 17 is f(x) = (x - 4)^2 - 33
  • The vertex of the quadratic function in item number 1 is (-4, -33)
  • The standard form of f(x) = x^2 + 4x - 6 is f(x) = (x + 2)^2 - 10
  • The standard form of f(x) = x^2 - 4x - 7 is f(x) = (x - 2)^2 - 11
  • General Form, Standard Form, Vertex
    • f(x) = 2x^2 - 1, (0, -1)
    • f(x) = x^2 - 6x + 9, f(x) = (x - 3)^2, (3, -9)
    • f(x) = x^2 - 6x, (3, -9)
    • f(x) = -x^2 + 2x, f(x) = -(x - 1)^2 + 1, (1, 1)
    • f(x) = -x^2 + 4x + 2, (2, 6)
  • General Form, Standard Form and its Vertexโ€จ
    • f(x) = x^2 + 6x + 10, f(x) = (x - 3)^2 + 1, (3, 1)
    • f(x) = x^2 - 6x + 10, f(x) = (x + 1)^2 - 3, (-1, -3)
    • f(x) = x^2 + 2x + 4, f(x) = (x + 1)^2 + 3, (-1, 3)
    • f(x) = x^2 + 2x - 2, f(x) = (x - 1)^2 + 3, (1,3)
    • f(x) = x^2 - 2x + 4, f(x) = (x + 3)^2 + 1, (-3, 1)
  • Transforming the quadratic function from general form to standard form involves expanding the expression and simplifying
  • To find the vertex, the values of a, b and c are substituted into the formulas h = -b/2a and k = (4ac - b^2)/4a
  • If f(x) = x^2 - 6x + 11 is transformed to standard form, the resulting quadratic function is f(x) = (x - 3)^2 - 2
  • Transform f(x) = -2(x + 6)^2 - 3 to general formโ€จ
    1. Expand (x + 6)^2
    2. Apply distributive property
    3. Simplify
  • The general form of f(x) = -2(x + 6)^2 - 3 is f(x) = -2x^2 - 24x - 75
  • Transform f(x) = (x - 1/2)^2 + 1/3 to general formโ€จ
    1. Expand (x - 1/2)^2
    2. Simplify
  • The general form of f(x) = (x - 1/2)^2 + 1/3 is f(x) = x^2 - x + 7/12
  • Corresponding general forms
    • f(x) = -x^2 - 4x - 5
    • f(x) = x^2 + 4x + 11/3
    • f(x) = x^2 - x + 5/4
    • f(x) = 2x^2 - 8x + 10
    • f(x) = -2x^2 - 4x - 1
    • f(x) = x^2 + 2x - 4
    • f(x) = 5x^2 + 20x + 20
    • f(x) = x^2 - 2x + 3/2
    • f(x) = -x^2 + 2x + 4
  • Transform f(x) = (x + 2)^2 - 5 to general formโ€จ
    1. Expand (x + 2)^2
    2. Simplify
  • General form of f(x) = (x - 1/2)^2 + 1/3โ€จ
    f(x) = x^2 - x + 7/12
  • Determine the corresponding general form of each function
    Write the letter that corresponds to the correct answer on the space provided to decode the message
  • f(x) = -2(x + 1)^2 + 1โ€จ
    f(x) = -x^2 - 4x - 5
  • f(x) = (x - 1)^2 + 1/2
    f(x) = x^2 - x + 5/4
  • f(x) = -(x + 2)^2 - 1โ€จ
    f(x) = 2x^2 - 8x + 10
  • f(x) = (x - 1/2)^2 + 1
    f(x) = -2x^2 - 4x - 1
  • f(x) = -(x - 1)^2 + 5โ€จ
    f(x) = x^2 + 2x - 4