Trigonometric Ratios of Special Angles

Cards (15)

  • Trigonometric ratios
    Ratios that relate the sides of a right triangle to the angles of the triangle
  • Finding trigonometric ratios of special angles
    1. Identify the special angle (30°, 45°, 60°)
    2. Draw the right triangle with the special angle
    3. Apply the formulas for sine, cosine, tangent, cosecant, secant, cotangent
    4. Simplify the ratios
  • Equilateral triangle
    • All sides are equal
    • All angles are 60°
  • Perpendicular bisector
    Line that is perpendicular to and bisects a line segment
  • In an equilateral triangle, the perpendicular bisector divides the side into two equal parts
  • Finding trigonometric ratios for 30° and 60° angles
    1. Identify the sides of the right triangle (a, a/2, √3a/2)
    2. Apply the formulas: sin 30° = 1/2, cos 30° = √3/2, tan 30° = 1/√3, csc 30° = 2, sec 30° = 2√3/3, cot 30° = √3
    3. Apply the formulas: sin 60° = √3/2, cos 60° = 1/2, tan 60° = √3, csc 60° = 2/√3, sec 60° = 2, cot 60° = 1/√3
  • Finding trigonometric ratios for 45° angles

    1. Identify the sides of the right triangle (a, a, a√2)
    2. Apply the formulas: sin 45° = 1/√2, cos 45° = 1/√2, tan 45° = 1, csc 45° = √2, sec 45° = √2, cot 45° = 1
  • Complementary angles (45°, 45°, 90°) have equal trigonometric ratios
  • Hypotenuse
    The longest side of a right-angled triangle, opposite the right angle
  • Legs
    The two shorter sides of a right-angled triangle
  • Finding trigonometric ratios
    1. Select the appropriate ratio
    2. Substitute the given values
    3. Simplify the expression
  • Trigonometric ratios of special angles (0°, 30°, 45°, 60°, 90°) can be memorised
  • Solving for unknown angles
    1. Use the given trigonometric ratio
    2. Substitute the known values
    3. Solve for the unknown angle
  • In a right-angled triangle, the sum of the angles is 180°
  • Trigonometric ratios are related: sin²θ + cos²θ = 1, tan θ = sin θ / cos θ