Solving triangle ABC using the law of sines
1. Given information: b = 16 cm, angle B = 28 degrees, c = 20 cm
2. Since b > c * sin B, this is an ambiguous case with two possible solutions
3. Solution 1: sin C1 = (sin 28 * 20) / 16 = 0.5868, C1 = 35.93 degrees
4. Angle A = 180 - 28 - 35.93 = 116.07 degrees
5. Side a = (16 * sin 116.07) / sin 28 = 30.61 cm
6. Solution 2: sin C2 = (sin 28 * 20) / 16 = 0.5868, C2 = 144.07 degrees
7. Angle A = 180 - 28 - 144.07 = 7.93 degrees
8. Side a = (16 * sin 7.93) / sin 28 = 4.7 cm