TRIGONOMETRY

    Subdecks (1)

    Cards (229)

    • cos(x) = adjacent/hypotenuse
    • tan(x) = opposite/adjacent
    • csc(x) = hypotenuse/opposite
    • sin^2(x) + cos^2(x) = 1
    • csc^2(x) - cot^2(x) = cosec^2(x)
    • sec^2(x) - tan^2(x) = sec^2(x)
    • sin(a+b) = sin(a)*cos(b)+cos(a)*sin(b)
    • sin(A-B) = sin(A)-sin(B)
    • sin(-x) = -sin(x)
    • sin(A+B) = sin(A)*cos(B)+cos(A)*sin(B)
    • cot^2(x) + 1 = cosec^2(x)
    • sec(x) = hypotenuse/adjacent
    • tan^2(x) + 1 = sec^2(x)
    • sin(A+B) = sin(A)*cos(B)+cos(A)*sin(B)
    • sin(A-B) = sin(A)-sin(B)
    • sin(a-b) = sin(a)*cos(b)-cos(a)*sin(b)
    • sin(A-B) = sin(A)-sin(B)
    • sin(A-B) = sin(A)-sin(B)
    • cos(A+B) = cos(A)*cos(B)-sin(A)*sin(B)
    • cos(A+B) = cos(A)*cos(B)-sin(A)*sin(B)
    • cos(A+B) = cos(A)*cos(B)-sin(A)*sin(B)
    • cos(a+b) = cos(a)*cos(b)-sin(a)*sin(b)
    • cos(a+b) = cos(a)*cos(b)-sin(a)*sin(b)
    • sin(30°) = ½√3
    • sin(30°) = ½√3
    • sin(45°) = ½√2
    • sin(45°) = ½√2
    • cos(-x) = cos(x)
    • tan(A-B) = (tan(A)-tan(B))/(1+tan(A)*tan(B))
    • cos(A-B) = cos(A)-cos(B)
    • sin(45°) = ½√2
    • tan(a+b) = (tan(a)+tan(b))/(1-tan(a)*tan(b))
    • tan(A-B) = (tan(A)-tan(B))/(1+tan(A)*tan(B))
    • cos(A-B) = cos(A)-cos(B)
    • sin(60°) = ½√3
    • tan(a+b) = (tan(a)+tan(b))/(1-tan(a)*tan(b))
    • tan(A-B) = (tan(A)-tan(B))/(1+tan(A)*tan(B))
    • tan(A+B) = (tan(A)+tan(B))/(1-tan(A)*tan(B))
    • sin(60°) = ½√3
    • csc^2(x) + cot^2(x) = 1
    See similar decks