TRIGONOMETRY

Subdecks (1)

Cards (229)

  • cos(x) = adjacent/hypotenuse
  • tan(x) = opposite/adjacent
  • csc(x) = hypotenuse/opposite
  • sin^2(x) + cos^2(x) = 1
  • csc^2(x) - cot^2(x) = cosec^2(x)
  • sec^2(x) - tan^2(x) = sec^2(x)
  • sin(a+b) = sin(a)*cos(b)+cos(a)*sin(b)
  • sin(A-B) = sin(A)-sin(B)
  • sin(-x) = -sin(x)
  • sin(A+B) = sin(A)*cos(B)+cos(A)*sin(B)
  • cot^2(x) + 1 = cosec^2(x)
  • sec(x) = hypotenuse/adjacent
  • tan^2(x) + 1 = sec^2(x)
  • sin(A+B) = sin(A)*cos(B)+cos(A)*sin(B)
  • sin(A-B) = sin(A)-sin(B)
  • sin(a-b) = sin(a)*cos(b)-cos(a)*sin(b)
  • sin(A-B) = sin(A)-sin(B)
  • sin(A-B) = sin(A)-sin(B)
  • cos(A+B) = cos(A)*cos(B)-sin(A)*sin(B)
  • cos(A+B) = cos(A)*cos(B)-sin(A)*sin(B)
  • cos(A+B) = cos(A)*cos(B)-sin(A)*sin(B)
  • cos(a+b) = cos(a)*cos(b)-sin(a)*sin(b)
  • cos(a+b) = cos(a)*cos(b)-sin(a)*sin(b)
  • sin(30°) = ½√3
  • sin(30°) = ½√3
  • sin(45°) = ½√2
  • sin(45°) = ½√2
  • cos(-x) = cos(x)
  • tan(A-B) = (tan(A)-tan(B))/(1+tan(A)*tan(B))
  • cos(A-B) = cos(A)-cos(B)
  • sin(45°) = ½√2
  • tan(a+b) = (tan(a)+tan(b))/(1-tan(a)*tan(b))
  • tan(A-B) = (tan(A)-tan(B))/(1+tan(A)*tan(B))
  • cos(A-B) = cos(A)-cos(B)
  • sin(60°) = ½√3
  • tan(a+b) = (tan(a)+tan(b))/(1-tan(a)*tan(b))
  • tan(A-B) = (tan(A)-tan(B))/(1+tan(A)*tan(B))
  • tan(A+B) = (tan(A)+tan(B))/(1-tan(A)*tan(B))
  • sin(60°) = ½√3
  • csc^2(x) + cot^2(x) = 1