Save
Math
Derivative
L'Hôpital's rule
Save
Share
Learn
Content
Leaderboard
Learn
Created by
Kirill
Visit profile
Cards (2)
L'Hôpital's rule
: if
lim
x
→
a
f
(
x
)
g
(
x
)
=
\lim_{x \to a}{\frac{f(x)}{g(x)}} =
lim
x
→
a
g
(
x
)
f
(
x
)
=
0
0
\frac{0}{0}
0
0
or
lim
x
→
a
f
(
x
)
g
(
x
)
=
\lim_{x \to a}{\frac{f(x)}{g(x)}} =
lim
x
→
a
g
(
x
)
f
(
x
)
=
∞
∞
\frac{\infty}{\infty}
∞
∞
then
lim
x
→
a
f
′
(
x
)
g
′
(
x
)
\lim_{x \to a}{\frac{f'(x)}{g'(x)}}
lim
x
→
a
g
′
(
x
)
f
′
(
x
)
OR Limit of two functions is
equal
to the
limit
of their
derivatives
,
if such limit exists
Extensions of
l'Hôpital's rule
:
lim
x
→
∞
l
n
x
x
=
\lim_{x\to\infty}{\frac{lnx}{x}}=
lim
x
→
∞
x
l
n
x
=
∞
∞
=
\frac{\infty}{\infty}=
∞
∞
=
lim
x
→
∞
1
/
x
1
=
\lim_{x\to\infty}{\frac{1/x}{1}}=
lim
x
→
∞
1
1/
x
=
0
0
0