L'Hôpital's rule

Cards (2)

  • L'Hôpital's rule: if limxaf(x)g(x)=\lim_{x \to a}{\frac{f(x)}{g(x)}} =00 \frac{0}{0} or limxaf(x)g(x)=\lim_{x \to a}{\frac{f(x)}{g(x)}} = \frac{\infty}{\infty} then limxaf(x)g(x)\lim_{x \to a}{\frac{f'(x)}{g'(x)}}
    OR Limit of two functions is equal to the limit of their derivatives, if such limit exists
  • Extensions of l'Hôpital's rule:
    limxlnxx=\lim_{x\to\infty}{\frac{lnx}{x}}==\frac{\infty}{\infty}=limx1/x1=\lim_{x\to\infty}{\frac{1/x}{1}}=00