Math - part 1

    Cards (17)

    • Part_01_introduction
      A) 1.0
      B) 2x2x2x2x4
    • P(x) represents the system's degree of belief
    • Joint and Marginal Distributions
      A) 0.15+0.1+0.1+0.03
      B) 0.03+0.04+0.05+0.5
      C) 0.62,0.38
    • Joint and Marginal Distributions (2)
      A) 0.1+0.03+0.05+0.5
      B) 0.15+0.03+0.1+0.05
    • P(αβ)P(\alpha \cap \beta) = P(αβ)P(\alpha | \beta) P(β)P(\beta)
    • P(αβ)P(\alpha \cap \beta) = P(βα)P(\beta \cap \alpha )
    • Chain Rule for Probability
      A) 4,3,2,1
      B) 3,2,1
      C) 2,1
      D) 1
    • Law of total probability
      P(x)P(x) = yVal(y)\sum_{y \in Val(y)} P(x,y)P(x,y)
      A) x|y
      B) y
      C) x
      D) y|x
    • Marginal distributions : P(X)=P(X) = yP(X,y)\sum_y P(X,y)
      Conditional distributions : P(XZ)P(X|Z) = yP(X,yZ)\sum_y P(X,y | Z)
    • P(αβ)P(\alpha | \beta)= P(βα)P(α)P(\beta | \alpha) P(\alpha) / P(β)P(\beta)
    • Inference by enumeration :
      A) 0.1+0.03+0.04+0.5
      B) 0.1+0.05
    • Inference by enumeration (2)
      A) 0.1+0.03
      B) 0.1+0.03+0.04+0.5
    • Inference by enumeration (3)
      A) 0.1+0.03
      B) 0.04+0.5
    • The general inference-by-Enumeration Algorithm
      A) 0.1+0.03
      B) 0.04+0.5
      C) 0.13+0.54
      D) Z
    • Test Yourself
      A) 0.5, 0.5
      B) 0.4, 0.6
      C) 0.75, 0.33
      D) 0.25, 0.67
      E) 0.6, 0.4
      F) 0.2, 0.8
    • Joint vs Posterior
      A) 0.2,0.4
      B) 0.33,0.67
    • to do 55/65 part 2 fundamentals