Math - part 1

Cards (17)

  • Part_01_introduction
    A) 1.0
    B) 2x2x2x2x4
  • P(x) represents the system's degree of belief
  • Joint and Marginal Distributions
    A) 0.15+0.1+0.1+0.03
    B) 0.03+0.04+0.05+0.5
    C) 0.62,0.38
  • Joint and Marginal Distributions (2)
    A) 0.1+0.03+0.05+0.5
    B) 0.15+0.03+0.1+0.05
  • P(αβ)P(\alpha \cap \beta) = P(αβ)P(\alpha | \beta) P(β)P(\beta)
  • P(αβ)P(\alpha \cap \beta) = P(βα)P(\beta \cap \alpha )
  • Chain Rule for Probability
    A) 4,3,2,1
    B) 3,2,1
    C) 2,1
    D) 1
  • Law of total probability
    P(x)P(x) = yVal(y)\sum_{y \in Val(y)} P(x,y)P(x,y)
    A) x|y
    B) y
    C) x
    D) y|x
  • Marginal distributions : P(X)=P(X) = yP(X,y)\sum_y P(X,y)
    Conditional distributions : P(XZ)P(X|Z) = yP(X,yZ)\sum_y P(X,y | Z)
  • P(αβ)P(\alpha | \beta)= P(βα)P(α)P(\beta | \alpha) P(\alpha) / P(β)P(\beta)
  • Inference by enumeration :
    A) 0.1+0.03+0.04+0.5
    B) 0.1+0.05
  • Inference by enumeration (2)
    A) 0.1+0.03
    B) 0.1+0.03+0.04+0.5
  • Inference by enumeration (3)
    A) 0.1+0.03
    B) 0.04+0.5
  • The general inference-by-Enumeration Algorithm
    A) 0.1+0.03
    B) 0.04+0.5
    C) 0.13+0.54
    D) Z
  • Test Yourself
    A) 0.5, 0.5
    B) 0.4, 0.6
    C) 0.75, 0.33
    D) 0.25, 0.67
    E) 0.6, 0.4
    F) 0.2, 0.8
  • Joint vs Posterior
    A) 0.2,0.4
    B) 0.33,0.67
  • to do 55/65 part 2 fundamentals