Gas exchange

    Cards (22)

    • Movement of air in the lungs: 
      • Mechanics of breathing produce inspiration and air flow  
      • During inspiration air initially moves into lungs via convection  
      • Air passes through the conducting zone to respiratory zone of the bronchial tree  
      • Air in smallest airways move into the alveoli sacs by diffusion  
      • The actual exchange of gases occurs across the capillaries in the alveoli sacs 
    • Convection: movement of currents within fluids (i.e. liquids, gases) 
    • Diffusion: process by which molecules intermingle as a result of their kinetic energy of random motion. It's an extremely rapid process and can only occur over very small distances 
       
    • Diffusion and gas exchange: 
      • Gas exchange takes place in alveoli sac across the alveolar membrane  
        – a boundary between the external environment and interior of the body  
       
      • Gases cross the respiratory membrane by diffusion  
      • In accordance with Fick’s Law 
    • Fick’s Law: 
      • The rate of transfer of a gas through a sheet of tissue is proportional to  
        – tissue area  
        – difference in gas partial pressure between the 2 sides  
        – diffusion constant  
       
      • inversely proportional to tissue thickness 
       
    • Diffusion across alveolar membrane: In accordance with Fick’s law diffusion is dependent on  
      Concentration / pressure gradient  
      Gas solubility  
      Thickness of alveolar membrane  
      Surface area of alveolar membrane  
      Ventilation / perfusion coupling 
       
    • Partial pressure: 
      • Partial pressure describes the amount of gas dissolved in the plasma  
      – E.g. PaO2 amount of O2 dissolved in plasma of arterial blood  
      – PvCO2 amount of CO2 dissolved in plasma of venous blood 
       
    • Gas solubility: 
      • Both O2 and CO2 are soluble gases  
      CO2 is 20 times more soluble than O2 
      High solubility of CO2 facilitates rapid diffusion despite small CO2 gradient  
      Equal amounts of CO2 & O2 diffuse across the respiratory membrane in the same time period 
    • Clinical relevance solubility: 
      • In respiratory disease when diffusion is impaired O2 will be primarily affected as it is less soluble  
      • A significant impairment is required to lead to poor CO2 transfer 
       
    • Thickness of alveolar membrane: 
      0.5 to 1 nanometer thick  
      Diffusion efficiency is highly dependent on distances involved  
      • As membrane ultra-thin gas exchange rapid and efficient 
       
    • Clinical relevance membrane thickness: 
      • If membrane thickened there is greater distance between alveoli and capillary  
      Diffusion slower and / or impaired  
      Leading to hypoxia  
      Membrane thickening may occur due to 
      Inflammation  
      Infection  
      Fibrosis 
       
    • Surface area of membrane: 
      Adult lung contains around 300 million alveoli  
      • Gives gas exchange surface area 70- 80m2  
      • Huge capacity which can be utilised to maintain acid-base balance  
       
    • Clinical relevance surface area: 
      • If surface area reduced, despite adequate diffusion sufficient gas exchange may not be possible  
       
      • ↓ O2 and ↑ CO2 and ↓ pH --> acidity  
       
      Temporary loss surface area  
      Bronchial obstruction (tumour, mucus plug)  
      Atelectasis (partial collapsed lung) 
      Consolidation  
       
      Permanent loss surface area  
      Emphysematous bullae 
    • Ventilation perfusion coupling: 
      V/Q ratio is measurement used to describe efficiency and adequacy of matching two variables  
       
      • V ventilation  
      – the air which reaches the lungs  
       
      Q perfusion  
      – the blood which reaches the lungs  
    • V/Q differences in normal lung: 
      • The lungs are centered vertically around the heart  
      • Part of the lung is superior to the heart and part is inferior  
      • This has major impact on the V/Q ratio  
      • Lower part of lung is better ventilated and better perfused than apex 
       
    • Clinical relevance V/Q: 
      • For efficient gas exchange there needs to be maximum coupling between ventilation and perfusion  
      Inadequacy of either V or Q will have significant impact on removal of CO2& oxygenation of blood  
      • The V/Q ratio can be measured with a ventilation/perfusion scan 
       
    • Shunt – no ventilation, but perfusion 
      alveolar dead space – ventilation but no perfusion 
       
    • Maintaining V/Q matching: 
      Vital to maintain V/Q ratio to achieve adequate gas exchange  
      • In respiratory disease V/Q mismatch triggers auto-regulatory homeostatic mechanisms to minimise deficit  
      – Hypoxic pulmonary vasoconstriction (HPV) or dilation  
      – Bronchiole response (constriction or dilation) 
       
    • Hypoxic pulmonary vasoconstriction: 
      • In respiratory disease areas of poor ventilation lead to ↓ gas exchange & hypoxia 
      • When PaO2 falls to ~ 6Kpa / SaO2 low 80s hypoxia is sensed by receptors in arterioles 
      • Arterioles passing through area of poor ventilation constrict to minimise V/Q mismatch  
      Blood flow is redirected to area with good ventilation to facilitate gas exchange 
       
    • Clinical relevance HPVC: 
      • Persistent HPVC occurs in chronic respiratory disease (COPD)  
      Pulmonary arterioles have ↓ diameter due vasoconstriction  
      • Therefore ↑ resistance to blood flow 
      • To maintain blood flow to lungs R side heart must work hard  
      • R side heart hypertrophy  
      • Ultimately --> R sided heart failure  
      • Cor Pulmonale – need long term 2 therapy  
       
    • Pulmonary capillary recruitment: In areas where ventilation is high additional vessels in the pulmonary arteriole bed are recruited to optimise V/Q matching and maximise gas exchange 
    • Bronchiole Response: 
      Bronchioles are highly sensitive to PACO2 (alveolar levels of carbon dioxide
      • High PACO2 produces bronchodilation  
        – ↑ CO2 excretion  
        – normalisation of PACO2 & PaCO2  
       
      • Low PACO2 produces bronchoconstriction  
        – ↓ CO2 excretion  
        – normalisation of PACO2 & PaCO2 
       
    See similar decks