Gas exchange

Cards (22)

  • Movement of air in the lungs: 
    • Mechanics of breathing produce inspiration and air flow  
    • During inspiration air initially moves into lungs via convection  
    • Air passes through the conducting zone to respiratory zone of the bronchial tree  
    • Air in smallest airways move into the alveoli sacs by diffusion  
    • The actual exchange of gases occurs across the capillaries in the alveoli sacs 
  • Convection: movement of currents within fluids (i.e. liquids, gases) 
  • Diffusion: process by which molecules intermingle as a result of their kinetic energy of random motion. It's an extremely rapid process and can only occur over very small distances 
     
  • Diffusion and gas exchange: 
    • Gas exchange takes place in alveoli sac across the alveolar membrane  
      – a boundary between the external environment and interior of the body  
     
    • Gases cross the respiratory membrane by diffusion  
    • In accordance with Fick’s Law 
  • Fick’s Law: 
    • The rate of transfer of a gas through a sheet of tissue is proportional to  
      – tissue area  
      – difference in gas partial pressure between the 2 sides  
      – diffusion constant  
     
    • inversely proportional to tissue thickness 
     
  • Diffusion across alveolar membrane: In accordance with Fick’s law diffusion is dependent on  
    Concentration / pressure gradient  
    Gas solubility  
    Thickness of alveolar membrane  
    Surface area of alveolar membrane  
    Ventilation / perfusion coupling 
     
  • Partial pressure: 
    • Partial pressure describes the amount of gas dissolved in the plasma  
    – E.g. PaO2 amount of O2 dissolved in plasma of arterial blood  
    – PvCO2 amount of CO2 dissolved in plasma of venous blood 
     
  • Gas solubility: 
    • Both O2 and CO2 are soluble gases  
    CO2 is 20 times more soluble than O2 
    High solubility of CO2 facilitates rapid diffusion despite small CO2 gradient  
    Equal amounts of CO2 & O2 diffuse across the respiratory membrane in the same time period 
  • Clinical relevance solubility: 
    • In respiratory disease when diffusion is impaired O2 will be primarily affected as it is less soluble  
    • A significant impairment is required to lead to poor CO2 transfer 
     
  • Thickness of alveolar membrane: 
    0.5 to 1 nanometer thick  
    Diffusion efficiency is highly dependent on distances involved  
    • As membrane ultra-thin gas exchange rapid and efficient 
     
  • Clinical relevance membrane thickness: 
    • If membrane thickened there is greater distance between alveoli and capillary  
    Diffusion slower and / or impaired  
    Leading to hypoxia  
    Membrane thickening may occur due to 
    Inflammation  
    Infection  
    Fibrosis 
     
  • Surface area of membrane: 
    Adult lung contains around 300 million alveoli  
    • Gives gas exchange surface area 70- 80m2  
    • Huge capacity which can be utilised to maintain acid-base balance  
     
  • Clinical relevance surface area: 
    • If surface area reduced, despite adequate diffusion sufficient gas exchange may not be possible  
     
    • ↓ O2 and ↑ CO2 and ↓ pH --> acidity  
     
    Temporary loss surface area  
    Bronchial obstruction (tumour, mucus plug)  
    Atelectasis (partial collapsed lung) 
    Consolidation  
     
    Permanent loss surface area  
    Emphysematous bullae 
  • Ventilation perfusion coupling: 
    V/Q ratio is measurement used to describe efficiency and adequacy of matching two variables  
     
    • V ventilation  
    – the air which reaches the lungs  
     
    Q perfusion  
    – the blood which reaches the lungs  
  • V/Q differences in normal lung: 
    • The lungs are centered vertically around the heart  
    • Part of the lung is superior to the heart and part is inferior  
    • This has major impact on the V/Q ratio  
    • Lower part of lung is better ventilated and better perfused than apex 
     
  • Clinical relevance V/Q: 
    • For efficient gas exchange there needs to be maximum coupling between ventilation and perfusion  
    Inadequacy of either V or Q will have significant impact on removal of CO2& oxygenation of blood  
    • The V/Q ratio can be measured with a ventilation/perfusion scan 
     
  • Shunt – no ventilation, but perfusion 
    alveolar dead space – ventilation but no perfusion 
     
  • Maintaining V/Q matching: 
    Vital to maintain V/Q ratio to achieve adequate gas exchange  
    • In respiratory disease V/Q mismatch triggers auto-regulatory homeostatic mechanisms to minimise deficit  
    – Hypoxic pulmonary vasoconstriction (HPV) or dilation  
    – Bronchiole response (constriction or dilation) 
     
  • Hypoxic pulmonary vasoconstriction: 
    • In respiratory disease areas of poor ventilation lead to ↓ gas exchange & hypoxia 
    • When PaO2 falls to ~ 6Kpa / SaO2 low 80s hypoxia is sensed by receptors in arterioles 
    • Arterioles passing through area of poor ventilation constrict to minimise V/Q mismatch  
    Blood flow is redirected to area with good ventilation to facilitate gas exchange 
     
  • Clinical relevance HPVC: 
    • Persistent HPVC occurs in chronic respiratory disease (COPD)  
    Pulmonary arterioles have ↓ diameter due vasoconstriction  
    • Therefore ↑ resistance to blood flow 
    • To maintain blood flow to lungs R side heart must work hard  
    • R side heart hypertrophy  
    • Ultimately --> R sided heart failure  
    • Cor Pulmonale – need long term 2 therapy  
     
  • Pulmonary capillary recruitment: In areas where ventilation is high additional vessels in the pulmonary arteriole bed are recruited to optimise V/Q matching and maximise gas exchange 
  • Bronchiole Response: 
    Bronchioles are highly sensitive to PACO2 (alveolar levels of carbon dioxide
    • High PACO2 produces bronchodilation  
      – ↑ CO2 excretion  
      – normalisation of PACO2 & PaCO2  
     
    • Low PACO2 produces bronchoconstriction  
      – ↓ CO2 excretion  
      – normalisation of PACO2 & PaCO2