Save
Calculus 2 Reviews
Calculus 2 Unit 7 ( Test 2 )
Trig formulas
Save
Share
Learn
Content
Leaderboard
Learn
Created by
Lynn L
Visit profile
Cards (12)
d/dx(cos^-1 x) =
-1/√(1-x^2)
d/dx(sin^-1 x) =
1/√(1-x^2)
∫
ln
(
x
)
d
x
\int_{ }^{ }\ln\left(\sqrt{x}\right)dx
∫
ln
(
x
)
d
x
=
∫
ln
(
x
1
2
)
d
x
\int_{ }^{ }\ln\left(x^{\frac{1}{2}}\right)dx
∫
ln
(
x
2
1
)
d
x
=
∫
1
2
ln
(
x
)
d
x
\int_{ }^{ }\frac{1}{2}\ln\left(x\right)dx
∫
2
1
ln
(
x
)
d
x
∫
sin
(
2
x
)
d
x
\int_{ }^{ }\sin\left(2x\right)dx
∫
sin
(
2
x
)
d
x
=
−
1
2
cos
(
2
x
)
+
-\frac{1}{2}\cos\left(2x\right) +
−
2
1
cos
(
2
x
)
+
C
C
C
∫
1
1
−
x
2
d
x
\int_{ }^{ }\frac{1}{\sqrt{1-x^{2}}}dx
∫
1
−
x
2
1
d
x
=
sin^-1(x)
∫
−
1
1
−
x
2
d
x
\int_{ }-^{ }\frac{1}{\sqrt{1-x^{2}}}dx
∫
−
1
−
x
2
1
d
x
=
cos^-1(x)
∫
1
1
+
x
2
d
x
\int_{ }^{ }\frac{1}{1+x^{2}}dx
∫
1
+
x
2
1
d
x
=
tan^-1(x)
1/cos(x) =
sec(x)
1/sin(x) =
csc
(
x
)
1/tan(x) =
cot(x)
int ( 1/ (a^2 + x^2 )) dx
=
1
a
tan
−
1
(
u
a
)
+
\frac{1}{a}\tan^{-1}\left(\frac{u}{a}\right)+
a
1
tan
−
1
(
a
u
)
+
C
C
C
cos(2x)
=
cos
^2(x) -
sin
^2(x)