Cards (12)

  • d/dx(cos^-1 x) = -1/√(1-x^2)
  • d/dx(sin^-1 x) = 1/√(1-x^2)
  • ln(x)dx\int_{ }^{ }\ln\left(\sqrt{x}\right)dx
    = ln(x12)dx\int_{ }^{ }\ln\left(x^{\frac{1}{2}}\right)dx
    = 12ln(x)dx\int_{ }^{ }\frac{1}{2}\ln\left(x\right)dx
  • sin(2x)dx\int_{ }^{ }\sin\left(2x\right)dx
    = 12cos(2x)+-\frac{1}{2}\cos\left(2x\right) +C C
  • 11x2dx\int_{ }^{ }\frac{1}{\sqrt{1-x^{2}}}dx
    = sin^-1(x)
  • 11x2dx\int_{ }-^{ }\frac{1}{\sqrt{1-x^{2}}}dx
    = cos^-1(x)
  • 11+x2dx\int_{ }^{ }\frac{1}{1+x^{2}}dx
    = tan^-1(x)
  • 1/cos(x) = sec(x)
  • 1/sin(x) = csc(x)
  • 1/tan(x) = cot(x)
  • int ( 1/ (a^2 + x^2 )) dx
    = 1atan1(ua)+\frac{1}{a}\tan^{-1}\left(\frac{u}{a}\right)+CC
  • cos(2x) = cos^2(x) - sin^2(x)