Calculus 2 Unit 8 (Test 3)

Cards (18)

  • If f' is continuous on [a,b] , then the length of the curve y = f(x) is given by
    L = int from a to b sqrt ( 1 + (f'(x))^2 )dx
    or
    L = int from a to b sqrt ( 1 + (dy/dx)^2 ) dx
  • Steps to find arc length
    1. Find the derivative of f(x) and square it
    2. Fill it into the arc length equation
    3. Do a u-sub of the inner part of the square root, integrate by parts, or any of the integration techniques
    4. Evaluate it at the bounds of the problem and solve
  • Integration by parts formula
    int ( udv ) = uv - int (vdu )
    udv =\int_{ }^{ }udv\ = uv  vdu\ uv\ -\ \int_{ }^{ }vdu
  • Trigonometric Substitution, sqrt ( a^2 - x^2 )
    Side, sin(theta) = x/a -> x = a sin(theta)
    Use: 1 - sin^2(theta) = cos^2(theta)
  • Trigonometric Substitution, sqrt (a^2 + x^2)
    Hypotenuse, tan(theta) = x/a -> x= a tan(theta)
    Use: 1 + tan^2(theta) = sec^2(theta)
  • Trigonometric Substitution, sqrt (x^2 - a^2)
    Side, sec(theta) = x/a -> x= a sec(theta)
    Use: sec^2(theta) - 1 = tan^2(theta)
  • sine = opp / hypo
    cosine = adj / hypo
    tangent = opp / adj
  • sec = hypo / adj
    csc = hypo / opp
    cot = adj / opp
  • If a curve has the equation x = g(y); c ≤ y ≤ d, & g'(y) is continuous, then:
    L = int from c to d sqrt ( 1 + (g'(y))^2 ) dy
    or
    L = int from c to d sqrt ( 1 + (dx/dy)^2 ) dy
    * usually used when the original f(x)'s derivative is not defined at the integral
  • tan^2(x) + 1 = sec^2(x)
  • sin^2(x) = 1 - cos^2(x)
  • Area of a Surface of Revolution- About the x-axis
    S =S\ = ab2πf(x)1+(dydx)2dx\ \int_{a}^{b}2\pi f\left(x\right)\sqrt{1+\left(\frac{dy}{dx}\right)^{2}}dx
    S =S\ = cd2πy1+(dxdy)2dy\ \int_{c}^{d}2\pi y\sqrt{1+\left(\frac{dx}{dy}\right)^{2}}dy
  • Area of a Surface of Revolution- About the y-axis
    S =S\ = ab2πx1+(dydx)2dx\ \int_{a}^{b}2\pi x\sqrt{1+\left(\frac{dy}{dx}\right)^{2}}dx
    S =S\ = cd2πg(y)1+(dxdy)2dy\ \int_{c}^{d}2\pi g\left(y\right)\sqrt{1+\left(\frac{dx}{dy}\right)^{2}}dy
  • Steps to find the area of a surface of revolution
    1. Find the derivative of f(x) and square it
    2. Fill it into the arc length part of the equation and combine it with the 1 ( use LCD)
    3. Fill it into the formula, simplify, and evaluate the integral
  • Rotate around the x-axis = use 'y'
    Rotate around the y-axis = use 'x'
  • Arc Length Formula ( in terms of x)
    A =A\ = ab1+(f(x))2 dx\ \int_{a}^{b}\sqrt{1+\left(f'\left(x\right)\right)^{2\ }}dx
  • Arc Length Formula ( in terms of y)
    A =A\ = cd1+(f(y))2 dy\ \int_{c}^{d}\sqrt{1+\left(f'\left(y\right)\right)^{2\ }}dy
  • a^2 + 2ab + b^2 = (a + b)^2
    Factoring formula