Calculus 2 Unit 8 (Test 3)

    Cards (18)

    • If f' is continuous on [a,b] , then the length of the curve y = f(x) is given by
      L = int from a to b sqrt ( 1 + (f'(x))^2 )dx
      or
      L = int from a to b sqrt ( 1 + (dy/dx)^2 ) dx
    • Steps to find arc length
      1. Find the derivative of f(x) and square it
      2. Fill it into the arc length equation
      3. Do a u-sub of the inner part of the square root, integrate by parts, or any of the integration techniques
      4. Evaluate it at the bounds of the problem and solve
    • Integration by parts formula
      int ( udv ) = uv - int (vdu )
      udv =\int_{ }^{ }udv\ = uv  vdu\ uv\ -\ \int_{ }^{ }vdu
    • Trigonometric Substitution, sqrt ( a^2 - x^2 )
      Side, sin(theta) = x/a -> x = a sin(theta)
      Use: 1 - sin^2(theta) = cos^2(theta)
    • Trigonometric Substitution, sqrt (a^2 + x^2)
      Hypotenuse, tan(theta) = x/a -> x= a tan(theta)
      Use: 1 + tan^2(theta) = sec^2(theta)
    • Trigonometric Substitution, sqrt (x^2 - a^2)
      Side, sec(theta) = x/a -> x= a sec(theta)
      Use: sec^2(theta) - 1 = tan^2(theta)
    • sine = opp / hypo
      cosine = adj / hypo
      tangent = opp / adj
    • sec = hypo / adj
      csc = hypo / opp
      cot = adj / opp
    • If a curve has the equation x = g(y); c ≤ y ≤ d, & g'(y) is continuous, then:
      L = int from c to d sqrt ( 1 + (g'(y))^2 ) dy
      or
      L = int from c to d sqrt ( 1 + (dx/dy)^2 ) dy
      * usually used when the original f(x)'s derivative is not defined at the integral
    • tan^2(x) + 1 = sec^2(x)
    • sin^2(x) = 1 - cos^2(x)
    • Area of a Surface of Revolution- About the x-axis
      S =S\ = ab2πf(x)1+(dydx)2dx\ \int_{a}^{b}2\pi f\left(x\right)\sqrt{1+\left(\frac{dy}{dx}\right)^{2}}dx
      S =S\ = cd2πy1+(dxdy)2dy\ \int_{c}^{d}2\pi y\sqrt{1+\left(\frac{dx}{dy}\right)^{2}}dy
    • Area of a Surface of Revolution- About the y-axis
      S =S\ = ab2πx1+(dydx)2dx\ \int_{a}^{b}2\pi x\sqrt{1+\left(\frac{dy}{dx}\right)^{2}}dx
      S =S\ = cd2πg(y)1+(dxdy)2dy\ \int_{c}^{d}2\pi g\left(y\right)\sqrt{1+\left(\frac{dx}{dy}\right)^{2}}dy
    • Steps to find the area of a surface of revolution
      1. Find the derivative of f(x) and square it
      2. Fill it into the arc length part of the equation and combine it with the 1 ( use LCD)
      3. Fill it into the formula, simplify, and evaluate the integral
    • Rotate around the x-axis = use 'y'
      Rotate around the y-axis = use 'x'
    • Arc Length Formula ( in terms of x)
      A =A\ = ab1+(f(x))2 dx\ \int_{a}^{b}\sqrt{1+\left(f'\left(x\right)\right)^{2\ }}dx
    • Arc Length Formula ( in terms of y)
      A =A\ = cd1+(f(y))2 dy\ \int_{c}^{d}\sqrt{1+\left(f'\left(y\right)\right)^{2\ }}dy
    • a^2 + 2ab + b^2 = (a + b)^2
      Factoring formula
    See similar decks