Save
Ecuaciones DIferenciales
Identidades trigonometricas
Save
Share
Learn
Content
Leaderboard
Share
Learn
Created by
Melanie
Visit profile
Cards (15)
s
e
n
2
x
=
sen^{2}x=
se
n
2
x
=
1
−
c
o
s
2
(
x
)
1-cos^{2}(x)
1
−
co
s
2
(
x
)
c
o
s
2
(
x
)
=
cos^{2}(x)=
co
s
2
(
x
)
=
1
−
s
e
n
2
(
x
)
1-sen^{2}(x)
1
−
se
n
2
(
x
)
s
e
n
2
x
=
sen^{2}x=
se
n
2
x
=
=
=
=
1
−
c
o
s
2
(
x
)
2
\frac {1-cos2(x)}{2}
2
1
−
cos
2
(
x
)
c
o
s
2
x
=
cos^{2}x=
co
s
2
x
=
=
=
=
1
+
c
o
s
2
(
x
)
2
\frac {1+cos2(x)}{2}
2
1
+
cos
2
(
x
)
s
e
c
2
(
x
)
=
sec^{2}(x)=
se
c
2
(
x
)
=
=
=
=
1
+
1+
1
+
t
a
n
2
(
x
)
tan^{2}(x)
t
a
n
2
(
x
)
c
s
c
2
(
x
)
=
csc^{2}(x)=
cs
c
2
(
x
)
=
1
+
1+
1
+
c
o
t
2
(
x
)
cot^{2}(x)
co
t
2
(
x
)
s
e
n
(
2
x
)
=
sen(2x)=
se
n
(
2
x
)
=
2
s
e
n
(
x
)
c
o
s
(
x
)
2sen(x)cos(x)
2
se
n
(
x
)
cos
(
x
)
c
o
s
(
m
x
)
c
o
s
(
n
x
)
=
cos(mx)cos(nx)=
cos
(
m
x
)
cos
(
n
x
)
=
=
=
=
1
2
c
o
s
(
m
−
n
)
x
+
\frac {1}{2}cos(m-n)x+
2
1
cos
(
m
−
n
)
x
+
1
2
c
o
s
(
m
+
n
)
x
\frac {1}{2}cos(m+n)x
2
1
cos
(
m
+
n
)
x
s
i
n
(
m
x
)
⋅
s
i
n
(
n
x
)
=
sin(mx)\cdot sin(nx)=
s
in
(
m
x
)
⋅
s
in
(
n
x
)
=
1
2
c
o
s
(
m
+
n
)
x
−
1
2
c
o
s
(
m
−
n
)
x
\frac {1}{2}cos(m+n)x-\frac{1}{2}cos(m-n)x
2
1
cos
(
m
+
n
)
x
−
2
1
cos
(
m
−
n
)
x
s
i
n
(
x
+
y
)
=
sin(x+y)=
s
in
(
x
+
y
)
=
=
=
=
s
i
n
(
x
)
c
o
s
(
y
)
+
sin(x)cos(y)+
s
in
(
x
)
cos
(
y
)
+
c
o
s
(
x
)
s
i
n
(
y
)
cos(x)sin(y)
cos
(
x
)
s
in
(
y
)
c
o
s
(
x
+
y
)
=
cos(x+y)=
cos
(
x
+
y
)
=
c
o
s
(
x
)
c
o
s
(
y
)
−
s
i
n
(
x
)
s
i
n
(
y
)
cos(x)cos(y)-sin(x)sin(y)
cos
(
x
)
cos
(
y
)
−
s
in
(
x
)
s
in
(
y
)
s
i
n
(
x
)
c
o
s
(
x
)
sin(x)cos(x)
s
in
(
x
)
cos
(
x
)
=
=
=
1
2
s
i
n
(
2
x
)
\frac {1}{2}sin(2x)
2
1
s
in
(
2
x
)
s
i
n
(
x
)
c
o
s
(
y
)
=
sin(x)cos(y)=
s
in
(
x
)
cos
(
y
)
=
1
2
(
s
i
n
(
x
−
y
)
+
\frac {1}{2}(sin(x-y)+
2
1
(
s
in
(
x
−
y
)
+
s
i
n
(
x
+
y
)
)
sin(x+y))
s
in
(
x
+
y
))
c
o
s
(
2
x
)
=
cos(2x)=
cos
(
2
x
)
=
=
=
=
2
c
o
s
2
(
x
)
−
1
2cos^2(x)-1
2
co
s
2
(
x
)
−
1
s
i
n
(
x
)
+
sin(x)+
s
in
(
x
)
+
s
i
n
(
y
)
=
sin(y)=
s
in
(
y
)
=
(
2
)
⋅
s
i
n
x
+
y
2
⋅
c
o
s
x
−
y
2
(2) \cdot sin\frac{x+y}{2} \cdot cos\frac{x-y}{2}
(
2
)
⋅
s
in
2
x
+
y
⋅
cos
2
x
−
y
See similar decks
Derivatives of trigonometric functions:
AP Calculus AB > Unit 2: Differentiation: Definition and Fundamental Properties > 2.7 Derivatives of Basic Functions
182 cards
3.3 Using inverse trigonometric functions to solve trigonometric equations
AP Precalculus > Unit 3: Trigonometric and Polar Functions
55 cards
2.10 Derivatives of Trigonometric Functions
AP Calculus AB > Unit 2: Differentiation: Definition and Fundamental Properties
27 cards
Derivatives of remaining trigonometric functions:
AP Calculus AB > Unit 2: Differentiation: Definition and Fundamental Properties > 2.10 Derivatives of Trigonometric Functions
27 cards
3.4 Differentiating Inverse Trigonometric Functions
AP Calculus BC > Unit 3: Differentiation: Composite, Implicit, and Inverse Functions
51 cards
3.4 Differentiating Inverse Trigonometric Functions
AP Calculus AB > Unit 3: Differentiation: Composite, Implicit, and Inverse Functions
74 cards
Derivatives of inverse trigonometric functions:
AP Calculus AB > Unit 3: Differentiation: Composite, Implicit, and Inverse Functions > 3.4 Differentiating Inverse Trigonometric Functions
74 cards
6.13 Integrating Using Trigonometric Substitution
AP Calculus BC > Unit 6: Integration and Accumulation of Change
22 cards
6.12 Integrating Using Trigonometric Identities
AP Calculus BC > Unit 6: Integration and Accumulation of Change
46 cards
2.10 Finding the Derivatives of Trigonometric Functions
AP Calculus BC > Unit 2: Differentiation: Definition and Fundamental Properties
9 cards
Unit 3: Trigonometric and Polar Functions
AP Precalculus
248 cards
3.4 Graphing functions using polar coordinates
AP Precalculus > Unit 3: Trigonometric and Polar Functions
73 cards
3.2 Modeling data and scenarios with sinusoidal functions
AP Precalculus > Unit 3: Trigonometric and Polar Functions
73 cards
3.1 Relating right triangle trigonometry to the sine, cosine, and tangent functions
AP Precalculus > Unit 3: Trigonometric and Polar Functions
24 cards
3.5 Describing how angles and radii change with respect to each other in a polar graph
AP Precalculus > Unit 3: Trigonometric and Polar Functions
23 cards
Indentidades
167 cards
Identidades
33 cards
IDENTIDADES
223 cards
Identidades
9 cards
Nutrición
IDENTIDADES
33 cards
Carácter
IDENTIDADES
22 cards