Identidades trigonometricas

Cards (15)

  • sen2x=sen^{2}x=
    1cos2(x)1-cos^{2}(x)
  • cos2(x)=cos^{2}(x)=
    1sen2(x)1-sen^{2}(x)
  • sen2x=sen^{2}x=
    ==1cos2(x)2\frac {1-cos2(x)}{2}
  • cos2x=cos^{2}x=
    ==1+cos2(x)2\frac {1+cos2(x)}{2}
  • sec2(x)=sec^{2}(x)=
    ==1+1+tan2(x)tan^{2}(x)
  • csc2(x)=csc^{2}(x)=
    1+1+cot2(x)cot^{2}(x)
  • sen(2x)=sen(2x)=
    2sen(x)cos(x)2sen(x)cos(x)
  • cos(mx)cos(nx)=cos(mx)cos(nx)=
    ==12cos(mn)x+\frac {1}{2}cos(m-n)x+12cos(m+n)x\frac {1}{2}cos(m+n)x
  • sin(mx)sin(nx)=sin(mx)\cdot sin(nx)=
    12cos(m+n)x12cos(mn)x\frac {1}{2}cos(m+n)x-\frac{1}{2}cos(m-n)x
  • sin(x+y)=sin(x+y)=
    ==sin(x)cos(y)+sin(x)cos(y)+cos(x)sin(y)cos(x)sin(y)
  • cos(x+y)=cos(x+y)=
    cos(x)cos(y)sin(x)sin(y)cos(x)cos(y)-sin(x)sin(y)
  • sin(x)cos(x)sin(x)cos(x)
    ==12sin(2x) \frac {1}{2}sin(2x)
  • sin(x)cos(y)=sin(x)cos(y)=
    12(sin(xy)+\frac {1}{2}(sin(x-y)+sin(x+y))sin(x+y))
  • cos(2x)=cos(2x)=
    ==2cos2(x)12cos^2(x)-1
  • sin(x)+sin(x)+sin(y)=sin(y)=
    (2)sinx+y2cosxy2(2) \cdot sin\frac{x+y}{2} \cdot cos\frac{x-y}{2}