Qs M

Cards (25)

  • Low-cost carriers ask city governments of secondary airports for subsidies for operating air services

    This is accused of financial blackmail
  • Spatial interaction theory
    • Explains why many secondary cities are prepared to pay for accommodating airline routes
  • Accommodating a low-cost carrier in your city
    Lowers the time/cost/effort of reaching the city (reduces travel impedance/disutility/generalized costs)
  • Gravity theory
    Indicates that reduced impedance (increased accessibility) improves the 'gravity force' or level of spatial interaction, thus improving business opportunities, social/tourism interactions, which may be good for an economy
  • Derived demand
    The demand for travel is a derived demand
  • Variables important in explaining the demand for shopping trips in an urban area
    • Characteristics of the shopping options at the destination (assortment, variety, price, size, opening hours etc.)
    • Accessibility of the facility (parking, travel time, cost etc.)
    • Personal characteristics (income, car availability, etc.)
  • The demand for shopping trips in an area is particularly influenced by the characteristics of the shopping options at the destination and the accessibility of the facility
  • Personal characteristics such as income, car availability, etc. also play a role but less than the others
  • Trip generation equation
    O! = +0.091 + 0.735x"! − 0.945x#!
  • The constant in the trip generation equation is likely to have a positive sign as even if x1 and x2 are low or zero one would expect trips from the household
  • The sign of the parameter for x1 is correct as more family members means more trips
  • The sign of the parameter for x2 should be positive as well as more cars should usually lead to more trips
  • Wardrop's principle for deterministic user equilibrium assignment

    In equilibrium, all used routes have the same minimum travel cost, and all unused routes have equal or higher travel costs
  • Revealed preference data

    Example: GPS traces of cyclists including origin, destination, and route choice logged by the 'SMART Enschede' smartphone application
  • The network has two origin-destination pairs (O1-D and O2-D), and each OD pair is connected by two paths
  • The trip rate from O1 to D is 5, and the trip rate from O2 to D is 3
  • Travel time functions on the links
    t1 = (x1)2, t2 = 4, t3 = 3+3x3, t4 = 3x4, t5 = 5
  • Calculating user-equilibrium (Wardrop-equilibrium) link flow distribution
    Since the demand for commodity O1-D all have to use link 1, the volume on link 1 is 5. Link 2 should have a flow of 3. For the network restricted to nodes A and B, with an OD-trip rate of 8, 3+3x = 3*(8 - x), so 6x = 21, and x = 21/6 (3.5). Hence 3.5 units of flow use link 3, and 4.5 units of flow use link 4. 8 will use link 5.
  • Calculating resulting travel times for all paths for all OD pairs in equilibrium
    Travel times are then: 43.5 for the 'top' path, and 43.5 for the bottom path for commodity O1-D. 22.5 for both paths for commodity O2-D.
  • Between two cities there are two alternative car routes connecting the two cities
  • In the morning peak hour, 50 cars travel over these two routes from city A to city B
  • Travel time functions
    Route 1: t1 = 20 + 0.1 x1, Route 2: t2 = 24
  • On average, the traffic flow on route 1 is 30 vehicles (per morning peak hour), and 20 vehicles use route 2
  • The flow distribution is not in 'equilibrium', as formulated along the condition of J.G. Wardrop
  • The capacity on route 1 is 30 (vehicles per morning peak hour)