equations mayhs

Cards (57)

  • Straight line equation formula

    y-y1 = m(x-x1)
  • Perpendicular straight lines

    m1 x m2 = -1
  • Log(a)b=c
    a^c=b
  • Log(10)x + Log(10)y =

    Log(10)xy
  • Log(10)x - Log(10)y =

    Log(10)x/y
  • Displacement dy/dx =
    Velocity
  • Velocity dy/dx =
    Acceleration
  • Cos^2A + Sin^2A=
    1
  • 1 + Tan^2A =

    Sec^2A
  • 1 + Cot^2A =
    Cosec^2A
  • 2SinAcosA =

    Sin2A
  • Cos^2A - Sin^2A =
    Cos2A
  • (2tanA)/(1-tan^2A) =
    Tan2A
  • Arc Length (radians) =

  • Sector Area (radians) =
    1/2 r^2 θ
  • x^n dy/dx =

    nx^(n-1)
  • Sinkx dy/dx =
    kCoskx
  • Coskx dy/dx =
    -kSinkx
  • e^(kx) dy/dx =

    ke^(kx)
  • ∫Coskx =
    1/k Sinkx +c
  • ∫Sinkx =

    -1/k Coskx +c
  • ∫e^(kx) =
    1/k e^(kx) +c
  • ∫1/x =
    ln |x| +c
  • Weight =

    Mass x g
  • Force =

    Mass x Acceleration
  • Midpoint of a line

    (X1+X2)/2 , (y1+y2)/2
  • Length of a straight line
    √(x2-x1)^2+(y2-y1)^2
  • Gradient of a line
    Change in y/Change in x
  • Equation of a circle

    (x-a)^2 + (y-b)^2 = r^2 , Centre (a,b) & Radius is r
  • Area of a triangle
    1/2 base x height
  • Cos(90-θ)=

    Sinθ
  • Sin(90-θ)=
    Cosθ
  • Sinθ/Cosθ=

    Tanθ
  • Sine Rule
    SinA/a = SinB/b
  • Cosine Rule

    a^2 = b^2 + c^2 -2bcCosA
    OR
    CosA = (b^2 + c^2 -a^2)/2bc
  • Area of a triangle
    1/2abSinC
  • Calculating sin values

    180-1st value, then +/- 360
  • Calculating cos values

    360-1st value, then +/- 360
  • Calculating tan values

    +/- 180
  • Converting from component form to magnitude-direction form (vectors)

    Magnitude= √i^2 + j^2
    Direction= Tanθ= j/i