Save
maths stats definitions
equations mayhs
Save
Share
Learn
Content
Leaderboard
Learn
Created by
hannah imran
Visit profile
Cards (57)
Straight
line equation formula
y-y1 =
m(x-x1)
Perpendicular
straight lines
m1
x
m2
= -1
Log(a)b=c
a^c=b
Log
(10)x + Log(10)y =
Log(10)xy
Log
(10)x - Log(10)y =
Log(10)x/y
Displacement dy/dx =
Velocity
Velocity dy/dx =
Acceleration
Cos^2A + Sin^2A=
1
1
+ Tan^2A =
Sec^
2A
1 + Cot^2A =
Cosec^2A
2SinAcosA
=
Sin2A
Cos^2A - Sin^2A =
Cos2A
(2tanA)/(1-tan^2A) =
Tan2A
Arc Length
(radians) =
rθ
Sector Area (radians) =
1/2 r^
2
θ
x
^n dy/dx =
nx^(
n-1
)
Sinkx dy/dx =
kCoskx
Coskx dy/dx =
-kSinkx
e
^(kx) dy/dx =
ke
^(kx)
∫Coskx =
1
/k Sinkx +
c
∫Sinkx
=
-1/k
Coskx
+
c
∫e^(kx) =
1
/k e^(kx) +
c
∫1/x =
ln
|x|
+c
Weight
=
Mass
x g
Force
=
Mass
x
Acceleration
Midpoint
of a line
(
X1
+
X2
)/2 , (y1+y2)/2
Length of a straight line
√(
x2-x1
)^
2
+(y2-y1)^2
Gradient of a line
Change in y/
Change
in
x
Equation
of a circle
(x-a)^2 + (y-b)^2 = r^2 ,
Centre
(a,b) &
Radius
is r
Area of a triangle
1/2 base
x
height
Cos
(90-θ)=
Sinθ
Sin(90-θ)=
Cosθ
Sinθ
/Cosθ=
Tanθ
Sine Rule
SinA
/a =
SinB
/b
Cosine
Rule
a^2 =
b^2
+
c^2 -2bcCosA
OR
CosA = (
b^2
+
c^2 -a^2
)/2bc
Area of a triangle
1/2abSinC
Calculating
sin values
180-1st value, then +/
-
360
Calculating
cos values
360-1st value, then +/
-
360
Calculating
tan values
+/
-
180
Converting
from component form to magnitude-direction form (vectors)
Magnitude
= √i^2 + j^2
Direction
= Tanθ= j/i
See all 57 cards