Save
...
Probalistc Models
Part 2 : Fundamental concepts of probability
Continuation distributions
Save
Share
Learn
Content
Leaderboard
Learn
Created by
Merel DJ
Visit profile
Cards (8)
A function p : R -> R is a
Probability Density Function
(PDF) for a continuous variable X if
p
(
x
)
≥
∀
x
∈
V
a
l
(
x
)
p(x) \geq \forall x \in Val(x)
p
(
x
)
≥
∀
x
∈
Va
l
(
x
)
A function p : R -> R is a
Probability Density Function
(PDF) for a continuous variable X if :
p
(
x
)
≥
∀
x
∈
V
a
l
(
X
)
p(x) \geq \forall x \in Val(X)
p
(
x
)
≥
∀
x
∈
Va
l
(
X
)
(x) \geq \forall x \in Val(X)
p
(
x
)
=
p(x) =
p
(
x
)
=
0
,
∀
x
∉
V
a
l
(
X
)
0, \forall x \notin Val(X)
0
,
∀
x
∈
/
Va
l
(
X
)
(x) = 0, \forall x \notin Val(X)
∫
−
inf
+
inf
p
(
x
)
d
x
=
\int_{- \inf}^{+ \inf} p(x) dx =
∫
−
i
n
f
+
i
n
f
p
(
x
)
d
x
=
1
1
1
PDF
is not a probability distribution
Cumultative Distribution Function
(CDF)
for any a in R :
P
(
X
≤
a
)
=
P(X \leq a) =
P
(
X
≤
a
)
=
∫
−
∞
a
p
(
x
)
d
x
\int_{- \infin}^{a} p(x) dx
∫
−
∞
a
p
(
x
)
d
x
P
(
a
≤
X
≤
b
)
=
P(a \leq X \leq b) =
P
(
a
≤
X
≤
b
)
=
P
(
X
≤
b
)
−
P
(
X
≤
a
)
=
P(X \leq b) - P(X \leq a) =
P
(
X
≤
b
)
−
P
(
X
≤
a
)
=
∫
a
b
p
(
x
)
d
x
\int_a^b p(x)dx
∫
a
b
p
(
x
)
d
x
Joint
(Multivariate)
Normal Distribution
mean vector u, covariance sigma, denoted X ~ N(u, sigma) if they have the multivariate Gaussian PDF :
p
(
x
)
=
p(x) =
p
(
x
)
=
1
(
2
π
)
N
/
2
∣
Σ
∣
1
2
−
1
2
(
x
−
μ
)
T
Σ
−
1
(
x
−
μ
)
\frac{1}{(2\pi)^{N/2} |\Sigma|^\frac{1}{2}}^{-\frac{1}{2}(x- \mu)^T \Sigma^{-1} (x - \mu)}
(
2
π
)
N
/2
∣Σ
∣
2
1
1
−
2
1
(
x
−
μ
)
T
Σ
−
1
(
x
−
μ
)
A variable X has a
Normal Distirbution
with mean mu and variable sigma^2 denoted X~{mean, variance^2},
p
(
x
)
=
p(x) =
p
(
x
)
=
1
2
π
σ
e
−
(
x
−
μ
)
2
2
σ
2
\frac{1}{\sqrt{2\pi} \sigma}e^{- \frac{(x - \mu)^2}{2 \sigma^2}}
2
π
σ
1
e
−
2
σ
2
(
x
−
μ
)
2
A
real variable
X has
a Uniform distribution
over
range
[a,b] denoted X ~ Unif[a,b], if it has the PDF :