Save
...
Probalistc Models
Part 2 : Fundamental concepts of probability
Continuation distributions
Save
Share
Learn
Content
Leaderboard
Share
Learn
Created by
Merel DJ
Visit profile
Cards (8)
A function p : R -> R is a
Probability Density Function
(PDF) for a continuous variable X if
p
(
x
)
≥
∀
x
∈
V
a
l
(
x
)
p(x) \geq \forall x \in Val(x)
p
(
x
)
≥
∀
x
∈
Va
l
(
x
)
A function p : R -> R is a
Probability Density Function
(PDF) for a continuous variable X if :
p
(
x
)
≥
∀
x
∈
V
a
l
(
X
)
p(x) \geq \forall x \in Val(X)
p
(
x
)
≥
∀
x
∈
Va
l
(
X
)
(x) \geq \forall x \in Val(X)
p
(
x
)
=
p(x) =
p
(
x
)
=
0
,
∀
x
∉
V
a
l
(
X
)
0, \forall x \notin Val(X)
0
,
∀
x
∈
/
Va
l
(
X
)
(x) = 0, \forall x \notin Val(X)
∫
−
inf
+
inf
p
(
x
)
d
x
=
\int_{- \inf}^{+ \inf} p(x) dx =
∫
−
i
n
f
+
i
n
f
p
(
x
)
d
x
=
1
1
1
PDF
is not a probability distribution
Cumultative Distribution Function
(CDF)
for any a in R :
P
(
X
≤
a
)
=
P(X \leq a) =
P
(
X
≤
a
)
=
∫
−
∞
a
p
(
x
)
d
x
\int_{- \infin}^{a} p(x) dx
∫
−
∞
a
p
(
x
)
d
x
P
(
a
≤
X
≤
b
)
=
P(a \leq X \leq b) =
P
(
a
≤
X
≤
b
)
=
P
(
X
≤
b
)
−
P
(
X
≤
a
)
=
P(X \leq b) - P(X \leq a) =
P
(
X
≤
b
)
−
P
(
X
≤
a
)
=
∫
a
b
p
(
x
)
d
x
\int_a^b p(x)dx
∫
a
b
p
(
x
)
d
x
Joint
(Multivariate)
Normal Distribution
mean vector u, covariance sigma, denoted X ~ N(u, sigma) if they have the multivariate Gaussian PDF :
p
(
x
)
=
p(x) =
p
(
x
)
=
1
(
2
π
)
N
/
2
∣
Σ
∣
1
2
−
1
2
(
x
−
μ
)
T
Σ
−
1
(
x
−
μ
)
\frac{1}{(2\pi)^{N/2} |\Sigma|^\frac{1}{2}}^{-\frac{1}{2}(x- \mu)^T \Sigma^{-1} (x - \mu)}
(
2
π
)
N
/2
∣Σ
∣
2
1
1
−
2
1
(
x
−
μ
)
T
Σ
−
1
(
x
−
μ
)
A variable X has a
Normal Distirbution
with mean mu and variable sigma^2 denoted X~{mean, variance^2},
p
(
x
)
=
p(x) =
p
(
x
)
=
1
2
π
σ
e
−
(
x
−
μ
)
2
2
σ
2
\frac{1}{\sqrt{2\pi} \sigma}e^{- \frac{(x - \mu)^2}{2 \sigma^2}}
2
π
σ
1
e
−
2
σ
2
(
x
−
μ
)
2
A
real variable
X has
a Uniform distribution
over
range
[a,b] denoted X ~ Unif[a,b], if it has the PDF :
See similar decks
6.3 Probability Distributions
Edexcel GCSE Mathematics > 6. Statistics
91 cards
5.1 Probability Concepts
Edexcel GCSE Mathematics > 5. Probability
130 cards
4.5 Conditional Probability
AP Statistics > Unit 4: Probability, Random Variables, and Probability Distributions
48 cards
4.10 Introduction to the Binomial Distribution
AP Statistics > Unit 4: Probability, Random Variables, and Probability Distributions
58 cards
4.1 Probability Distributions
AQA A-Level Further Mathematics > Optional Application 2 – Statistics
82 cards
4.9 Combining Random Variables
AP Statistics > Unit 4: Probability, Random Variables, and Probability Distributions
42 cards
5.1 Probability Concepts
OCR GCSE Mathematics > 5. Probability
26 cards
4.7 Introduction to Random Variables and Probability Distributions
AP Statistics > Unit 4: Probability, Random Variables, and Probability Distributions
30 cards
2.2.2 Key Concepts
OCR GCSE Psychology > Unit 2: Development > 2.2 Piagets Theory of Cognitive Development
56 cards
Understanding the Fundamental Theorem of Calculus:
AP Calculus AB > Unit 6: Integration and Accumulation of Change > 6.4 The Fundamental Theorem of Calculus and Definite Integrals
39 cards
6.3 Probability Distributions
GCSE Mathematics > 6. Statistics
76 cards
1.2.3 Distribution and Circulation
Edexcel A-Level Media Studies > Component 1: Media Products, Industries and Audiences > 1.2 Media Industries
37 cards
9.3 Reviewing Key Concepts
AP English Language and Composition > Unit 9: Exam Preparation
78 cards
Understanding the common Boolean operators
OCR GCSE Computer Science > 2.2 Programming Fundamentals > 2.2.1 Programming Concepts
50 cards
6.1.2 The Role of Models in Economics
Edexcel GCSE Economics > 6. Economic Methodology and the Economic Problem > 6.1 Economic Methodology
48 cards
6.1.2 The Role of Models in Economics
Edexcel GCSE Economics > 6. Economic Methodology and the Economic Problem > 6.1 Economic Methodology
34 cards
6.1 Key Concepts in Sleep and Dreaming
OCR GCSE Psychology > Unit 6: Sleep and Dreaming
57 cards
8.4 Electric Fields of Charge Distributions
AP Physics C: Electricity and Magnetism > Unit 8: Electric Charges, Fields, and Gauss’s Law
102 cards
1.5 Identifying assumptions and limitations of function models
AP Precalculus > Unit 1: Polynomial and Rational Functions
38 cards
2.3.1 Dynamic Equilibrium Concept
CCEA GCSE Chemistry > Unit 2: Further Chemical Reactions, Rates and Equilibrium, Calculations and Organic Chemistry > 2.3 Chemical Equilibrium
28 cards
2.1.1 Concept of Place
OCR A-Level Geography > 2. Human Interactions > 2.1 Changing Spaces; Making Places
39 cards