Cards (10)

    • ML Estimation for unconditional distributions
      A) log
      B) max
      C) derivative
      D) 0
    • Maximum likelihood estimate for
      A) Bernoulli distribution
      B) binary
      C) x0
      D) x0
      E) x1
      F) occurences
    • Conditional probabilities
      A) discrete
      B) conditional
      C) xi|y
      D) events
      E) D
    • ML estimate for the parameters
      A) Normal distribution
      B) Gaussian PDF
      C) Joint Mulitvariable Normal
      D) Multivariate Gaussian PDF
    • Problem with the ML estimate :
      • ignores amount of evidence
      • bases its decision on likelihood
      • single estimate
    • Bayesian Parameter estimation :
      • learns a probability distribution over all possible parameter values
      • computes posterior distribution
    • Posterior distribution combines :
      • strength of evidence
      • subjective expectations
      • P(D) is hard to calculate integral
    • Bayesian paramter estimation
      A) Maximum likelihood
      B) Maximum A posteriori
      C) posterior mean
    • How to choose a final single estimate θ
      A) Maximum Likelihood
      B) Maximum A Posteriori
      C) Posterior Mean
    • Bayesian Model averaging :
      • result of parameter estimation a probabiliy distributino over all possible θ
      • we could use all possible parameter settings to perform inference
      • "true bayesian approach" -> to complicated
    See similar decks