Save
Fundamental Concepts of Mathematics
4
Save
Share
Learn
Content
Leaderboard
Learn
Created by
Justine Reagan
Visit profile
Cards (17)
Laws of Algebra of Sets
Commutative Laws
Associative Laws
Distributive Laws
Identity Laws
Inverse or Complement Laws
Idempotent Laws
Involution Law
De Morgan's Law
Absorption Laws
Set Difference Law
Commutative
Laws
āØ
š“ āŖ
šµ = šµ āŖ š“
š“ ā©
šµ = šµ ā© š“
Associative Laws
āØ
š“ āŖ (šµ āŖ š¶) = (š“ āŖ šµ) āŖ š¶
š“ ā© (šµ ā© š¶) = (š“ ā© šµ) ā© š¶
Distributive Laws
āØ
š“ āŖ (šµ ā© š¶) = (š“ āŖ šµ) ā© (š“ āŖ š¶)
š“ ā© (šµ āŖ š¶) = (š“ ā© šµ) āŖ (š“ ā© š¶)
Identity Laws
āØ
š“ āŖ Ć =
š“
š“ ā© š = š“
š“ āŖ š = š
š“ ā© Ć = Ć
Inverse
or
Complement Laws
āØ
š“ āŖ š“š
= š
š“ ā© š“š
= Ć
šš = Ć
Ćš = š
Idempotent
Laws
āØ
š“ āŖ
š“ = š“
š“ ā© š“ = š“
Involution Law
āØ
(
š“
š)š
= š“
De Morgan's Law
āØ
(š“ āŖ
šµ)š = š“š ā© šµš
(š“ ā© šµ)š = š“š āŖ šµš
Absorption Laws
āØ
š“ āŖ (š“ ā© šµ)
= š“
š“ ā© (š“ āŖ šµ) = š“
Set Difference Law
āØ
š“ -
šµ = š“ ā© šµš
The aforementioned laws can be verified by the use of the Venn-Euler diagram
Idempotent Law
āØ
š“ āŖ
š“ = š“
š“ ā© š“ = š“
Associative Law
āØ
š“ āŖ (šµ āŖ š¶) = (š“ āŖ šµ) āŖ š¶
The
principle of duality of sets
states that when the operations of
union
and
intersection
, empty set and the universal set or any of the laws of sets are
interchanged
, a new
valid equation
is formed
Principle
of
Duality
āØ
(šµ āŖ
š¶)
ā©
š“ = (šµ ā© š“
)
āŖ (š¶ ā© š“)
(šµ ā© š¶) āŖ š“
=
(šµ āŖ š“) ā© (š¶ āŖ š“)
Proving Set Identities
āØ
Example 1: (š“ āŖ šµ) ā© (šµ āŖ š¶) = (š“ ā© š¶) āŖ šµ
Example 2: š“š āŖ (šµ āŖ š¶)š = (š“ ā© šµ)š ā© (š“ ā© š¶)š