Set Theory

    Cards (16)

    • Set
      A collection of objects/elements, using the curly brackets '{}'
    • Elipeses
      3 dots to represent ongoing collection
    • N
      Counting numbers
    • Z
      Counting numbers + Negative numbers
    • Q
      Rational Numbers = Counting + Negative + fractions + decimals numbers
    • R
      All real numbers + surds and pi
    • ∈ (is an element of)
      If A={1,2,3}, then 2∈A
    • ⊆ (is a subset of)

      If A={1,2,3,4} and B={1,2}, then B⊆A
    • ⊇ (is a superset of)
      If A={1,2,3,4} and B={1,2}, then A⊇B
    • ∩ (the intersection of)
      If A={1,2,3} and B={2,3,4}, then A∩B={2,3}
    • ∪ (the union of)

      If A={1,2,3} and B={2,3,4}, then A∪B={1,2,3,4}
    • \ (excluding)

      If A={1,2,3} and B={2,3,4}, then A\B={1}
    • ∅ (the empty set)
      If A={1,2,3} and B={4,5,6}, then A∩B=
    • ∃ (there exists)

      If x∈R, then ∃y∈R|y>x
    • ∀ (for all)
      ∀x∈Z, x
      2
      ≥x
    • ∋ (such that)
      A={x|∃a,b∈Z,(b≠0∧bx=a∧a⊥b)}, then A=Q
    See similar decks