Set Theory

Cards (16)

  • Set
    A collection of objects/elements, using the curly brackets '{}'
  • Elipeses
    3 dots to represent ongoing collection
  • N
    Counting numbers
  • Z
    Counting numbers + Negative numbers
  • Q
    Rational Numbers = Counting + Negative + fractions + decimals numbers
  • R
    All real numbers + surds and pi
  • ∈ (is an element of)
    If A={1,2,3}, then 2∈A
  • ⊆ (is a subset of)

    If A={1,2,3,4} and B={1,2}, then B⊆A
  • ⊇ (is a superset of)
    If A={1,2,3,4} and B={1,2}, then A⊇B
  • ∩ (the intersection of)
    If A={1,2,3} and B={2,3,4}, then A∩B={2,3}
  • ∪ (the union of)

    If A={1,2,3} and B={2,3,4}, then A∪B={1,2,3,4}
  • \ (excluding)

    If A={1,2,3} and B={2,3,4}, then A\B={1}
  • ∅ (the empty set)
    If A={1,2,3} and B={4,5,6}, then A∩B=
  • ∃ (there exists)

    If x∈R, then ∃y∈R|y>x
  • ∀ (for all)
    ∀x∈Z, x
    2
    ≥x
  • ∋ (such that)
    A={x|∃a,b∈Z,(b≠0∧bx=a∧a⊥b)}, then A=Q