Save
Specialist Math
Set Theory
Save
Share
Learn
Content
Leaderboard
Learn
Created by
Himal Shakya
Visit profile
Cards (16)
Set
A collection of
objects
/
elements
, using the
curly brackets
'{}'
Elipeses
3 dots
to represent
ongoing
collection
N
Counting numbers
Z
Counting
numbers +
Negative
numbers
Q
Rational Numbers = Counting + Negative + fractions + decimals numbers
R
All
real numbers
+ surds and
pi
∈ (is an element of)
If A={1,2,3}, then
2∈A
⊆ (is a
subset
of)
If A={1,2,3,4} and B={1,2}, then
B⊆A
⊇ (is a superset of)
If A={1,2,3,4} and B={1,2}, then
A⊇B
∩ (the intersection of)
If A={1,2,3} and B={
2,3
,4}, then A∩B={2,3}
∪ (the
union
of)
If A={
1,2,3
} and B={
2,3,4
}, then A∪B={
1,2,3,4
}
\ (
excluding
)
If A={
1,2,3
} and B={
2,3,4
}, then A\B={
1}
∅ (the empty set)
If A={1,2,3} and B={4,5,6}, then
A∩B
=
∅
∃ (
there exists
)
If x∈R, then ∃y∈R|y>x
∀ (for all)
∀x∈Z, x
2
≥x
∋ (such that)
A={x|∃a,b∈Z,(b≠0∧bx=a∧a⊥b)}, then
A=Q