Angular motion

Cards (15)

  • 2 𝛑 radians in full circle
  • θ\theta
    angular displacement ( radians )
  • ω1\omega_1
    angular initial velocity ( rad / s )
  • ω2\omega_2
    angular final velocity ( rad / s )
  • α\alpha
    angular acceleration ( rad / s2 )
  • t
    time ( s )
  • θω1ω2αt\theta\omega_1\omega_2\alpha\text{t}
    theta omega1 omega2 alpha t same order as SUVAT but for angular
  • ω2=\omega_2 =ω1+ \omega_1 +αt \alpha t
    angular final velocity = angular initial velocity + angular acceleration x time
  • ω22=\omega_2 ^2 =ω12+ \omega_1 ^2 +2αθ 2 \alpha \theta
    angular final velocity ^2 = angular initial velocity ^2 + 2 x angular acceleration x angular displacement
  • θ=\theta =ω1t+ \omega_1 t +12αt2 \frac {1}{2} \alpha t^2
    angular displacement = angular initial velocity x time + 0.5 x angular acceleration x time ^2
  • θ=\theta =[(ω1+ω2)2]t [\frac {(\omega1 + \omega2)}{2}]t
    angular displacement = (sum of angular velocity / 2 ) x time
  • a=a =αr αr
    linear acceleration = angular acceleration x radius
  • v=v =ωr \omega r
    linear velocity = angular velocity x radius
  • s=s =θr \theta r
    linear displacement = angular displacement x radius
  • 2πθ=2\pi\theta=1rev1_{rev}
    2 x pi radians = 1 revolution