Angular motion

    Cards (15)

    • 2 𝛑 radians in full circle
    • θ\theta
      angular displacement ( radians )
    • ω1\omega_1
      angular initial velocity ( rad / s )
    • ω2\omega_2
      angular final velocity ( rad / s )
    • α\alpha
      angular acceleration ( rad / s2 )
    • t
      time ( s )
    • θω1ω2αt\theta\omega_1\omega_2\alpha\text{t}
      theta omega1 omega2 alpha t same order as SUVAT but for angular
    • ω2=\omega_2 =ω1+ \omega_1 +αt \alpha t
      angular final velocity = angular initial velocity + angular acceleration x time
    • ω22=\omega_2 ^2 =ω12+ \omega_1 ^2 +2αθ 2 \alpha \theta
      angular final velocity ^2 = angular initial velocity ^2 + 2 x angular acceleration x angular displacement
    • θ=\theta =ω1t+ \omega_1 t +12αt2 \frac {1}{2} \alpha t^2
      angular displacement = angular initial velocity x time + 0.5 x angular acceleration x time ^2
    • θ=\theta =[(ω1+ω2)2]t [\frac {(\omega1 + \omega2)}{2}]t
      angular displacement = (sum of angular velocity / 2 ) x time
    • a=a =αr αr
      linear acceleration = angular acceleration x radius
    • v=v =ωr \omega r
      linear velocity = angular velocity x radius
    • s=s =θr \theta r
      linear displacement = angular displacement x radius
    • 2πθ=2\pi\theta=1rev1_{rev}
      2 x pi radians = 1 revolution
    See similar decks