Save
Dynamics
Angular motion
Save
Share
Learn
Content
Leaderboard
Learn
Created by
ben scott
Visit profile
Cards (15)
2
𝛑
radians
in full circle
θ
\theta
θ
angular
displacement
(
radians
)
ω
1
\omega_1
ω
1
angular
initial
velocity
(
rad
/ s )
ω
2
\omega_2
ω
2
angular
final
velocity
(
rad
/ s )
α
\alpha
α
angular
acceleration
(
rad
/ s2 )
t
time
(
s
)
θ
ω
1
ω
2
α
t
\theta\omega_1\omega_2\alpha\text{t}
θ
ω
1
ω
2
α
t
theta
omega1
omega2
alpha
t
same order as SUVAT but for angular
ω
2
=
\omega_2 =
ω
2
=
ω
1
+
\omega_1 +
ω
1
+
α
t
\alpha t
α
t
angular
final velocity
= angular
initial velocity
+ angular
acceleration
x
time
ω
2
2
=
\omega_2 ^2 =
ω
2
2
=
ω
1
2
+
\omega_1 ^2 +
ω
1
2
+
2
α
θ
2 \alpha \theta
2
α
θ
angular
final velocity
^
2
= angular
initial velocity
^
2
+ 2 x angular
acceleration
x angular
displacement
θ
=
\theta =
θ
=
ω
1
t
+
\omega_1 t +
ω
1
t
+
1
2
α
t
2
\frac {1}{2} \alpha t^2
2
1
α
t
2
angular
displacement
= angular
initial velocity
x
time
+
0.5
x angular
acceleration
x time ^
2
θ
=
\theta =
θ
=
[
(
ω
1
+
ω
2
)
2
]
t
[\frac {(\omega1 + \omega2)}{2}]t
[
2
(
ω
1
+
ω
2
)
]
t
angular
displacement
= (
sum
of angular
velocity
/
2
) x
time
a
=
a =
a
=
α
r
αr
α
r
linear
acceleration
=
angular
acceleration
x
radius
v
=
v =
v
=
ω
r
\omega r
ω
r
linear
velocity
=
angular
velocity
x
radius
s
=
s =
s
=
θ
r
\theta r
θ
r
linear
displacement
=
angular
displacement
x
radius
2
π
θ
=
2\pi\theta=
2
π
θ
=
1
r
e
v
1_{rev}
1
re
v
2
x
pi
radians
=
1
revolution