chemoreceptors

Cards (12)

  • Importance of Chemoreceptors: 
    Control and modify ventilation on breath by breath basis, very quick 
    • Feedback input to RCC → alter intrinsic respiratory pattern  
    • To maintain PaCO2, PaO2 and pH within physiological limits regardless of activity 
  • Peripheral Chemoreceptors: 
    • Located aortic arch & carotid body – first side blood reaches when blood is pumped out  
    • Sample surrounding arterial blood  
    • Sensitive to arterial hypoxaemia  
    – > 40% reductions in PaO2  
    – PaO2 8KPa or less  
    • ↑H+ content arterial blood  
    • Weakly sensitive to PaCO2 
  • Central Chemoreceptors: 
    • Located ventral lateral surface of medulla bilaterally 
    • Bathed in CSF (cerebral spinal fluid
    • CSF PCO2 = arterial PCO2  
    • Sensitive to arterial hypercapnia – Specifically ↑ H+ ion concentraion  
    • Responsible for 70% of drive to breath  
    • Central chemoreceptors have ↑ sensitivity to 
    • CO2 with mild hypoxia and acidosis 
  • CO2 Stimulation Central Chemoreceptors: 
    • CO2 diffuses across blood brain barrier  
    • CO2 combines with H2O in CSF  
    • This forms carbonic acid  
    • Carbonic acid disassociates to form bicarbonate and hydrogen ions  
    • CO2 + H2O --> H2CO3 --> HCO3 + H+  
    • H+ ↑ aciditypH of CSF  
    • ↓ pH CSF stimulates central chemoreceptors 
  • Response of central chemoreceptors: 
    • Central chemoreceptors feedback to the RCC 
    • RCC stimulate effectors 
    • Increase rate & depth of ventilation 
    • Until CO2/pH levels are in normal range 
    • When CO2 is low rate & depth of ventilation is reduced to allow CO2/pH to normalise 
  • Additional Actions of Chemoreceptors:  
    Stimulate sympathetic activity  
    Inhibit parasympathetic activity  
    Increase arterial blood pressure 
  • Chronic Hypercapnia: 
    • CO2 + H2O --> H2CO3 --> HCO3 + H+  
    • Transport of HCO3 across blood brain barrier to “buffer” CSF H+  
    • May take up to 3 days for full effect  
    • Effective buffering from the kidneys returns CSF pH to normal  
    • Reducing sensitivity of central chemoreceptors  
    • But arterial blood CO2 remains raised  
    • Blood pH remains acidotic
  • What would happen if patient with COPD and hypercapnia is given high levels of therapeutic O? 
    It would make the patient worse 
     
    Elevated levels PaCO2: 
    Secondary to  
    Loss of hypoxic drive  
    – Increased V/Q mismatch due to reversal HPVC  
    Haldane effect 
  • Loss of Hypoxic Drive: 
    COPD patients with chronic hypercapnia rely on peripheral chemoreceptors to sense arterial hypoxaemia  
    • If patient given high dose O2 arterial hypoxaemia reversed  
    • Only remaining drive to breathe is removed 
  • Hypoxic pulmonary vasoconstriction: 
    • areas of poor ventilation leads to a decrease of gas exchange & hypoxia 
    • when PaO2 falls to 6Kpa/SaO2 low 80s hypoxia is sense by receptors in arterioles 
    arterioles passing through area of poor ventilation constrict to minimise V/Q mismatch 
    blood flow is redirected to area with good ventilation to facilitate gas exchange  
     
  • Increased V/Q Mismatch: 
    • COPD patients have areas of lung destruction with poor ventilationhypoxia  
    V/Q mismatch  
    Compensatory HVC occurs in those areas  
    • If COPD patient given high dose O2 hypoxia in good lung tissue is reversed  
    • Sensed by control centres so HPVC is also reversed  
    • Leading to perfusion of non-ventilated lung and increased V/Q mismatch 
     
  • Haldane Effect: 
    • Haemoglobin (Hb) has strong affinity for O2 
    O2 transported bound to Hb  
    • When low O2 e.g. COPD CO2 binds to Hb  
    • If give patient high dose O2 Hb breaks off from CO2 in preference to bind with O2  
    CO2 dissolves in plasma  
    • Raising PaCO2