chemoreceptors

    Cards (12)

    • Importance of Chemoreceptors: 
      Control and modify ventilation on breath by breath basis, very quick 
      • Feedback input to RCC → alter intrinsic respiratory pattern  
      • To maintain PaCO2, PaO2 and pH within physiological limits regardless of activity 
    • Peripheral Chemoreceptors: 
      • Located aortic arch & carotid body – first side blood reaches when blood is pumped out  
      • Sample surrounding arterial blood  
      • Sensitive to arterial hypoxaemia  
      – > 40% reductions in PaO2  
      – PaO2 8KPa or less  
      • ↑H+ content arterial blood  
      • Weakly sensitive to PaCO2 
    • Central Chemoreceptors: 
      • Located ventral lateral surface of medulla bilaterally 
      • Bathed in CSF (cerebral spinal fluid
      • CSF PCO2 = arterial PCO2  
      • Sensitive to arterial hypercapnia – Specifically ↑ H+ ion concentraion  
      • Responsible for 70% of drive to breath  
      • Central chemoreceptors have ↑ sensitivity to 
      • CO2 with mild hypoxia and acidosis 
    • CO2 Stimulation Central Chemoreceptors: 
      • CO2 diffuses across blood brain barrier  
      • CO2 combines with H2O in CSF  
      • This forms carbonic acid  
      • Carbonic acid disassociates to form bicarbonate and hydrogen ions  
      • CO2 + H2O --> H2CO3 --> HCO3 + H+  
      • H+ ↑ aciditypH of CSF  
      • ↓ pH CSF stimulates central chemoreceptors 
    • Response of central chemoreceptors: 
      • Central chemoreceptors feedback to the RCC 
      • RCC stimulate effectors 
      • Increase rate & depth of ventilation 
      • Until CO2/pH levels are in normal range 
      • When CO2 is low rate & depth of ventilation is reduced to allow CO2/pH to normalise 
    • Additional Actions of Chemoreceptors:  
      Stimulate sympathetic activity  
      Inhibit parasympathetic activity  
      Increase arterial blood pressure 
    • Chronic Hypercapnia: 
      • CO2 + H2O --> H2CO3 --> HCO3 + H+  
      • Transport of HCO3 across blood brain barrier to “buffer” CSF H+  
      • May take up to 3 days for full effect  
      • Effective buffering from the kidneys returns CSF pH to normal  
      • Reducing sensitivity of central chemoreceptors  
      • But arterial blood CO2 remains raised  
      • Blood pH remains acidotic
    • What would happen if patient with COPD and hypercapnia is given high levels of therapeutic O? 
      It would make the patient worse 
       
      Elevated levels PaCO2: 
      Secondary to  
      Loss of hypoxic drive  
      – Increased V/Q mismatch due to reversal HPVC  
      Haldane effect 
    • Loss of Hypoxic Drive: 
      COPD patients with chronic hypercapnia rely on peripheral chemoreceptors to sense arterial hypoxaemia  
      • If patient given high dose O2 arterial hypoxaemia reversed  
      • Only remaining drive to breathe is removed 
    • Hypoxic pulmonary vasoconstriction: 
      • areas of poor ventilation leads to a decrease of gas exchange & hypoxia 
      • when PaO2 falls to 6Kpa/SaO2 low 80s hypoxia is sense by receptors in arterioles 
      arterioles passing through area of poor ventilation constrict to minimise V/Q mismatch 
      blood flow is redirected to area with good ventilation to facilitate gas exchange  
       
    • Increased V/Q Mismatch: 
      • COPD patients have areas of lung destruction with poor ventilationhypoxia  
      V/Q mismatch  
      Compensatory HVC occurs in those areas  
      • If COPD patient given high dose O2 hypoxia in good lung tissue is reversed  
      • Sensed by control centres so HPVC is also reversed  
      • Leading to perfusion of non-ventilated lung and increased V/Q mismatch 
       
    • Haldane Effect: 
      • Haemoglobin (Hb) has strong affinity for O2 
      O2 transported bound to Hb  
      • When low O2 e.g. COPD CO2 binds to Hb  
      • If give patient high dose O2 Hb breaks off from CO2 in preference to bind with O2  
      CO2 dissolves in plasma  
      • Raising PaCO2 
    See similar decks